Functions of random variables, Expectation

Putting a value on random variables

Michael Psenka

What we aim to model

"Random variable": notes

Functions induce random variables

Numeric random variables

Distribution (graphical)

Examples: Bernoulli

Examples: Binomial

(Numerical) joint distributions

Marginal distributions

Independence

Expectation

Definition. The expectation of a numeric random variable $X = (\Omega, \mathbb{P})$ is given by the following:

$$\mathbf{E}[X] \coloneqq \sum_{x \in \Omega} x \mathbb{P}(X = x).$$

Linearity of expectation

Theorem. Let X, Y be two (numeric) random variables, and their joint distribution given by $\mathbb{P}(X = x, Y = y)$. The expectation is a "linear operator": that is,

E[X + Y] = E[X] + E[Y],
E[cX] = cE[X] for any fixed c ∈ ℝ.

Linearity of expectation

Product of independent expectations

Theorem. Let X, Y be two (numeric) random variables, and their joint distribution given by $\mathbb{P}(X = x, Y = y)$. If X, Y are independent, then expectation factors out their product:

 $\mathbf{E}[XY] = \mathbf{E}[X]\mathbf{E}[Y].$

Product of independent expectations